
Practical fault attack against the Ed25519 and EdDSA signature schemes

Yolan Romailler, Sylvain Pelissier
Kudelski Security

Cheseaux-sur-Lausanne, Switzerland
{yolan.romailler,sylvain.pelissier}@kudelskisecurity.com

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/FDTC.2017.12

Abstract—The Edwards-curve Digital Signature Algorithm
(EdDSA) was proposed to perform fast public-key digital
signatures as a replacement for the Elliptic Curve Digital
Signature Algorithm (ECDSA). Its key advantages for em-
bedded devices are higher performance and straightforward,
secure implementations. Indeed, neither branch nor lookup
operations depending on the secret values are performed
during a signature. These properties thwart many side-channel
attacks. Nevertheless, we demonstrate here that a single-fault
attack against EdDSA can recover enough private key material
to forge valid signatures for any message. We demonstrate a
practical application of this attack against an implementation
on Arduino Nano. To the authors’ best knowledge this is the
first practical fault attack against EdDSA or Ed25519.

Keywords-EdDSA; Ed25519; fault attack; digital signature

I. INTRODUCTION

Elliptic Curve Cryptography (ECC) can be used to build
digital signature algorithms with a smaller key size than the
Digital Signature Algorithm (DSA) with the same level of
security. The security of such algorithms is generally based
on the Discrete Logarithm Problem (DLP), currently the
best known algorithms to solve this problem over elliptic
curves are less efficient than ones over finite groups. This
allowed the fast adoption of ECC to provide security in
the embedded ecosystem where resources are constrained.
The most widely used signature algorithm is ECDSA [1].
However, its implementations can suffer from some pit-
falls. For example, if the random number generator used
during the signature process is flawed, one can recover
the private key used for the signature operations [2], [3].
Furthermore, some implementations use addition formulas
for Montgomery curves which are not complete; for elliptic
curves, an addition formula is called complete if it correctly
computes the sum of any two points in the group. As a
result a point verification must be performed before the
signature operation. If this is not performed or a fault
changes the base point before the computation, then the
process is carried on another curve which may have weaker
security properties [4].

After Snowden’s revelations, a loss of trust in the NIST
curves occurred. Thus public confidence shifted to alterna-
tives such as the Curve25519 already proposed by Bernstein
in 2006 [5]. This curve offers a 128-bit security level and
is defined over Fp where p = 2255− 19. One of the curve’s

main advantages is that its scalar multiplication can be
implemented without secret dependent branch and lookup,
avoiding the risk of side-channel leakage. More recently, a
new digital signature algorithm, namely Ed25519 [6], was
proposed based on the curve edwards25519, i.e., the Edward
twist of Curve25519. This algorithm was then generalized
to other curves and called EdDSA [7]. Due to its various
advantages [7], EdDSA was quickly implemented in many
products and libraries, such as OpenSSH [8]. It was also
recently formally defined in RFC 8032 [9].

The authors of EdDSA did not make any claims about its
security against fault attacks. However, its resistance to fault
attacks is discussed in [10]–[12] and taken into account by
Perrin in [13].

Since more and more embedded devices will implement
EdDSA we analysed its resistance to fault attacks. We
exploited the determinism of the algorithm to build a fault
attack and we demonstrated its practicality, in what is—
to the extent of our knowledge—the first practical fault
attack against Ed25519 or EdDSA. We also studied which
countermeasures are necessary to avoid such fault attacks.

This paper is organized as follows: Section II presents Ed-
DSA; Section III reviews previous fault attacks; Section IV
describes our attack against EdDSA and how we applied it
on the Arduino Nano platform to an Ed25519 implementa-
tion. Then Section V presents possible countermeasures and
Section VI concludes.

II. EDWARDS-CURVE DIGITAL SIGNATURE ALGORITHM

EdDSA is a public-key signature algorithm similar to
ECDSA proposed by Bernstein et al. [6]. In RFC 8032 [9]
EdDSA is defined for two twisted Edwards curves ed-
wards25519 and edwards448; nevertheless EdDSA can be
instantiated over other curves. Generally speaking, a point
P = (x, y) lies on E, a twisted Edwards curve if it verifies
the following formula:

ax2 + y2 = 1 + dx2y2

where a, d are two distinct, non-zero elements of the field
K over which E is defined. For instance, edwards25519 is
defined over Fp with p = 2255 − 19 like Curve25519. As
Bernstein et al. demonstrated, edwards25519 is birationally
equivalent to Curve25519 [14]; thus the difficulty of solving
the DLP is equivalent for both curves. Likewise, edwards448

https://doi.org/10.1109/FDTC.2017.12


is defined over Fq with q = 2448 − 2224 − 1 and is built to
offer a security level of 224 bits.

An important property of these curves with neutral ele-
ment (0, 1) is to have an addition law, noted “+”, with a
complete formula. For both curves, the addition law formula
is given by:

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
.

This formula can be used for point doubling and points ad-
dition, even when the neutral element is involved. Adding a
point P to itself n times is defined to be scalar multiplication
and is denoted n · P .

EdDSA uses a private key k that is b-bit long and a hash
function H that produces a 2b-bits output. One common
instance is to use SHA-512 for b = 256 bits. An integer a
is determined from H(k) = (h0, h1, . . . , h2b−1) with

a = 2b−2 +
∑

3≤i≤b−3

2ihi .

The public key A is then computed from the base point
B 6= (0, 1) of order `, chosen as per the EdDSA specifica-
tions [6], such that A = a ·B. In practice the public key and
the signatures are output according to the encoding defined
in RFC 8032. Since there is a one-to-one relation between
curve elements and encoded values we do not detail the
encoding in our description.

The signature (R,S) of a message M is computed ac-
cording to Algorithm 1.

Algorithm 1 EdDSA Signature

Require: M , (h0, h1, . . . , h2b−1), B and A
1: a← 2b−2 +

∑
3≤i≤b−3 2

ihi

2: h← H(hb, . . . , h2b−1,M)
3: r ← h mod `
4: R← r ·B
5: h← H(R,A,M)
6: S ← (r + ah) mod `
7: return (R,S)

Amongst its differences from ECDSA, the signature com-
putation is deterministic, i.e., for a given message M , if
multiple signatures are computed they will all be identical.

A signature is considered valid if R ∈ E, S ∈
{0, 1, . . . , `− 1} and the following equation holds in E:

8S ·B = 8 ·R+ 8H(R,A,M) ·A .

Verification without the cofactor 8 is a stronger way to
verify a signature [7]. The algorithm’s performance, ease
of implementation, small key and signature sizes, all pave
the way for EdDSA’s rapid adoption, specially in embedded
devices.

III. FAULT ATTACKS

The principle of fault attacks is to disturb the normal
behaviour of a device making it output erroneous results
or bypass certain operations. If the fault happens during the
computation of sensitive operations, the erroneous outputs
may be used to recover sensitive information.

One of the simplest fault attacks consists in varying the
supplied voltage leading an unprotected processor to exhibit
non-expected behaviour. This attack, called voltage glitch,
has been successful in the past and remains possible against
unprotected microcontrollers as shown against the Arduino
Nano platform during the second Riscure challenge [15].
This method is easy to implement and non-invasive and
thus we have chosen it to practically demonstrate our attack.
Another simple fault attack is called clock glitching and
consists in varying the speed of the clock signal of a mir-
cocontroller. Although this attack has been demonstrated to
be successful [16] we did not try it during our investigation.
These attacks have been widely studied and nowadays most
modern secure devices integrate countermeasures against
them. Other advanced fault attacks exist and are actively
used such as electromagnetic [17], body biasing [18], op-
tical [19] and laser fault injection [20]. Since a basic voltage
glitch was sufficient to demonstrate our attack we did not
attempt more advanced fault injections, but our attack is
perfectly compatible with those methods.

The first fault attack against a public-key algorithm was
proposed by Boneh et al. [21] against RSA. They showed
that injecting a single fault during the modular exponen-
tiation computation is enough to recover the private key.
This was later practically realized by Amüller et al. [22]
on a smartcard using voltage glitch fault injection. They
used power profiling to find the correct timing for the fault
injection and then overdrove the supplied voltage during a
short period to disturb one of the operations. They also tested
the same scenario with various countermeasures.

The first fault attack against ECC was proposed by Biehl
et al. [4]. They showed that if the base point B is corrupted
during signature operations, and if the ECC implementation
does not check whether it lies on the curve or not, then
the computation will be performed on another curve where
the DLP may be easily solved using the Pohlig-Hellman
algorithm. This attack was later improved by Ciet et al. [23].
They showed that the faulted base point value can be
recovered from the faulty output. They also showed that a
fault occurring in the system parameters such as the field
definition or the curve coefficient values can lead to recovery
of the secret key. Another attack was proposed by Schmidt
and Medwed [24] against the ECDSA algorithm. Their fault
model was to skip a loop step during a scalar multiplication
operation. The main difficulty in applying fault attacks to
ECDSA is its use of a random nonce for each signature.
However, for EdDSA the same message can be signed



several times and the signature will not change, since it does
not rely on random nonces, but on deterministic generation
of the nonces. We used this to our advantage in order to
mount our fault attack. This property was also used to build
side-channel analysis against deterministic digital signature
schemes by Seuschek et al. [25].

IV. ATTACK AGAINST EDDSA

Our attack is based on faulting operation 5 of Algorithm 1
above during the computation of the signature. If the output
of the hash is faulted and changed to the value h′ 6= h then
the faulty signature will be (R,S′) i.e., only the second part
of the signature is changed. The value of a can be then
recovered with

a = (S − S′)(h− h′)−1 mod `.

This property has already been noticed in [11]–[13] and
holds for other variants of the EdDSA scheme [13], as
well as other deterministic signature schemes [10], [26]. The
value of h can be computed from R, A and M which are
known, however, the value h′ has to be known or guessed.
This limitation can be overcome if the fault model is
characterized properly and the faulted value can be guessed
in a post-processing phase. For example, we considered
the fault model to be a random byte e ∈ {1, 2, ..., 255}
injected at a random offset i after the hash computation,
i.e., h′ = 28ie ⊕ h. For example, i ∈ {0, 1, ..., 31} for
edwards25519 and i ∈ {0, 1, ..., 57} for edwards448. In the
first case, all the 255 · 32 = 8160 possibilities can be tested
for h′ until the computation of a ·B matches the public key
value A. The complete fault verification algorithm for this
fault model is given in Algorithm 2.

Algorithm 2 Ed25519 fault post-processing

Require: M , A, (R,S) and (R,S′)
1: h← H(R,A,M)
2: i← 0
3: for i < 32 do
4: e← 1
5: for e < 256 do
6: h′ ← 28ie⊕ h
7: a← (S − S′)(h− h′)−1 mod `
8: if a ·B == A then
9: return a

10: end if
11: e← e+ 1
12: end for
13: i← i+ 1
14: end for
15: return ERROR

If the previous algorithm outputs ERROR, then the fault
injected did not correspond to a single random byte error.

Other fault models can be considered depending on the
hardware, and the computation power of the attacker. For
instance, a random multi-byte error can be considered and
in this case the attacks iterates until a larger value of e.
Another possibility is a random byte error occurring before
the hash computation, e.g., on the value of the message M .
The attack still applies, except that it needs some tuning:
for the later example, a hash computation H(R,A,M ′), for
M ′ the faulty message candidate, must be performed at step
6 of Algorithm 2 and thus the cost of the error detection
grows significantly with the size of the message.

In addition, if the message M is not known, the attack
is still feasible as only the value h − h′ is used during the
computation of a. In our fault model, the difference will be
in the range {−255 · 28i,−254 · 28i, ...,−28i, 28i, ..., 254 ·
28i, 255 · 28i} for a given offset i. Thus we can test all of
the 511 values for all the possible offsets until a valid value
a is found.

Even if a is known, it remains impossible to compute
r = H(hb, ..., h2b−1,M) for a new message M since the
values hb, ..., h2b−1 are not known. This was considered as
a structural resistance by Barenghi and Pelosi [10]. However,
by selecting r as a random number, and computing a new
(R,S) similarly for any message M we have:

8S ·B = 8(r+H(R,A,M)a)·B = 8·R+8H(R,A,M)a·B

= 8 ·R+ 8H(R,A,M) ·A

The verification equation still holds. Thus it is possible to
forge valid signatures for any message. This demonstrates
that the design of EdDSA is sensitive to fault attacks and
great care should be taken when faults are part of the threat
model.

A. Attack simulation

To demonstrate our attack, we implemented it in Python
for the curve edwards25519. We based our code on the
original implementation of Bernstein [27]. The program
randomly generates a correct signature, then generates a
fault corresponding to a random byte inserted at a random
offset at the output of the hash function. Finally we applied
Algorithm 2 on the faulted results to recover a. As soon
as the correct value for a has been found we forge a new
signature for a different message and we verify the signature.
On a common laptop with an Intel Core i5-3320M processor,
on average our program takes 6.27s running on a single core
to recover the value a. An example of the program execution
is given in Appendix A. Our program was not meant to be
efficient but it demonstrates that this attack is practical. Our
code is available online [28]. The same method applies for
other curve like edwards448.



B. Practical verification

We also tested our attack against the Arduino Nano
platform running the Cryptographic Library from Arduino-
Libs [29]. The Arduino Nano board is based on the AT-
mega328 microcontroller and is fully compatible with the
Arduino software. The library implements the Ed25519
algorithm, with H being SHA-512 solely in software i.e.no
hardware accelerator is available on this platform. We cre-
ated a small program performing a signature computation
with a fixed secret key when a character is sent on the serial
connection and prints its signature. Our test code is also
publicly available [28]. We noticed in the code performing
the last SHA-512 operation, that the SHA512::finalize
function performs a loop to copy the resulting hash in big
endian with the htobe64 function. Faulting this loop could
allow us to have the required fault to perform the attack. If
the fault consists in one random byte, the value of h′ can be
recovered when trying all the 32 · 255 = 8160 possibilities
offline.

To have timing information about the different operations,
we used the GPIO pins of the Arduino Nano to indicate
when an operation starts and finishes. The resulting traces
are shown in Figure 1.

Figure 1: Signature timing

The RX signal is the serial connection signal and it
indicates the beginning of the signature operation. The whole
signature operation lasts 5.11s on average and one can
remark that most of the signature time is spent in the scalar
multiplication.

To perform glitches, we unsoldered the VCC pins 4 and 6
of the TQFP package from the PCB and we supplied them
externally with a pulse generator as shown in Figure 2.

AVCC pin 18 was also disconnected to avoid any internal
power supply. The microcontroller worked properly even
when the VCC was lower than 3.9V. We used this voltage
level supply to perform our experiments. We also modified
the code and set a GPIO pin to be high during the critical

Figure 2: VCC external connection

copy loop at the end of the second SHA-512 operation. This
step takes about 141.66µs. The GPIO signal was used as a
trigger to launch the glitch during the loop operation. We
performed glitches during the time where the GPIO pin was
high only. The parameters for a glitch are its width, i.e.,
the time when the VCC is set to be low, and its depth, i.e.,
the level where the VCC was lowered during the glitch. We
kept the slope of the glitch as steep as possible, i.e. the glitch
is only a few ns. After empirical tests, we discovered that
when the glitch width was around 30ns and the depth 0V
we obtained faults matching our fault model. This allowed
us to recover the value a derived from the private key, as
shown in Appendix B. We show in Figure 3 the signals we
obtained during this experiment as well as a zoom on the
voltage glitch form that gave these results.

Figure 3: VCC glitch form

During a normal attack scenario, the attacker would not be
able to modify the code to add GPIO synchronization point.
The attacker has to be synchronized with an external or
internal event, for example the serial communication or side
channel leakage such as power consumption or electromag-
netic emanations. In the Ed25519 signature implementation,



the value a is derived from k which is time independent of
the value of k. Then the value r is computed with SHA-
512. This operation is also time constant when the size
of M does not change. Then R = r · B is computed. In
ArduinoLibs this operation is CPU cycle constant. Finally
H(R,A,M) is computed. Hence, the global timing for the
fault injection remains fairly constant, varying only with
small fluctuations of the internally generated clock if used.
The attacker may choose to synchronize her glitch with the
serial communication to the Arduino board and does not
need any additional steps to synchronize with side channel
leakages. This means that as soon as the timing of the hash
operation to be faulted is known, it can be repeated on
other similar devices to recover their secrets. The only large
variations in the timings could come from microcontroller
interrupts or clock division circuitry.

We synchronized our glitch with the serial communication
which initiates the signature operation, with a delay based on
the previously gained timing information. In this case some
jitter is introduced by the serial communication interruptions
but glitching several times with the same delay allows to
fault the final SHA-512 copy loop and thus to obtain the
desired faulted signature. Appendix B gives some examples
of the faults obtained during these experiments, as well
as the private key material recovered. ince this approach
was successful we did not use more advanced methods to
synchronize our fault injection with other events.

V. COUNTERMEASURES

Besides generic countermeasures against fault attacks, we
can highlight three ways to avoid being vulnerable to this
attack:

• Using a random r value is completely compatible
with the verification process and undetectable upon
validation, the sole way to detect the difference is to
sign twice the same message and check if the same
signature is produced, since it would then give different
signatures (both of which are still validated by the
public key without issue). However, doing so brings
back a random number generator in the implementation
of the signature scheme and renders it non-compliant
with the newly released RFC 8032 [9]. This approach
has already been implemented in the XEdDSA and
VXEdDSA signature algorithms of the Signal proto-
col [13].

• Validating the signature at the end of the process would
catch a fault but it would likely not protect effectively
against scenarios where an attacker can inject faults in
the system at will, as is typically the case in embedded
systems. Besides, validation is a longer operation than
the signature operation and thus is inefficient.

• Since our attack targets the output of the second hash
function, one can think of securing this computation.

For example it may be possible to double the compu-
tation and compare both results to resist a single fault
injection. However, the attack may be applied to the
input of the hash function and thus the input has to be
protected as well. This approach does not prevent other
attack paths, or other fault models.

• Last, but not least, we propose to compute S in a way
which would prevent faults located in both the hash
and the message to allow the recovery of the private
material a:

1) Compute h1 = H(R,A,M) with an (hardware)
implementation.

2) Compute h2 = H(R,A,M) with another imple-
mentation.

3) Compute

S = (r+ h1 + (a− ni)h1 + (ni − 1)h2) mod `

with ni a random b-bit number, changed at each
signature computation.

This works since:
– If h1 = h2 = h, we have S = r + ah mod `.
– If h1 6= h2, and a fault occurred on h1:

(S − S′) = (r + h+ (a− n0)h+ (n0 − 1)h)

− (r + h′1 + (a− n1)h
′
1 + (n1 − 1)h)

= h− h′1 + ah− ah′1 − n1h+ n1h
′
1

= (a+ 1− n1)(h− h′1) mod `,

the introduction of the random n1 hinders the
recovery of a.

– If h1 6= h2, and a fault occurred on h2:

(S − S′) = (r + h+ (a− n0)h+ (n0 − 1)h)

− (r + h+ (a− n1)h+ (n1 − 1)h′2)

= n1h− h− n1h
′
2 + h′2

= (n1 − 1)(h− h′2) mod `,

is no longer linked with the private material a at
all.

This is similar to the so-called “fault infective compu-
tations” introduced by [30]. Thus this method prevents
faults in h1 or h2 from outputting a value which leaks
the actual value of a, except if two same faults are
performed on both h1 and h2. This is considered hard
to do—especially if both implementations differ.

We believe that the impact of using poor randomness in
EdDSA is far less than for ECDSA and either our first or
last proposal should be preferred to prevent fault attacks.

VI. CONCLUSION

We demonstrated the first known practical fault attack
against EdDSA and Ed25519, which shows that those algo-
rithms, although featuring excellent protections against many
classes of attacks by design, are vulnerable to fault attacks.



Thus, as with other algorithms, fault protections must be
built in, when deployed on embedded devices. It is important
to note that our work is unlikely to—and indeed should
not—hinder the prevalence of these well thought out and
well designed algorithms in most cryptographic protocols,
since fault attacks are generally not part of their threat
model. That being said, as we have shown, mitigations are
possible when faults are part of the model which may allow
their safe use without further changes.

ACKNOWLEDGMENTS

The authors would like to thank Andrew McLauchlan
for his help setting up the glitch bench and conducting the
practical experiment, as well as Karine Villegas for her help
designing a novel countermeasure. We would also like to
thank the multiple reviewers for their insightful comments
on our paper.

REFERENCES

[1] NIST. FIPS 186-4 Digital Signature Standard (DSS), 2013.

[2] Phong Nguyen and Igor Shparlinski. The Insecurity of
the Elliptic Curve Digital Signature Algorithm with partially
known nonces. Designs, codes and cryptography, 30(2):201–
217, 2003.

[3] Filippo Valsorda. Exploiting ECDSA Failures in the Bitcoin
Blockchain. HITBSecConf - Malaysia, 2014.

[4] Ingrid Biehl, Bernd Meyer, and Volker Müller. Differential
Fault Attacks on Elliptic Curve Cryptosystems. In Mihir
Bellare, editor, Advances in Cryptology - CRYPTO 2000: 20th
Annual International Cryptology Conference Santa Barbara,
California, USA, Proceedings, 2000.

[5] Daniel J. Bernstein. Curve25519: new Diffie-Hellman speed
records. In International Workshop on Public Key Cryptog-
raphy, pages 207–228. Springer, 2006.

[6] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe,
and Bo-Yin Yang. High-speed high-security signatures. In
International Workshop on Cryptographic Hardware and Em-
bedded Systems, pages 124–142. Springer, 2011.

[7] Daniel J. Bernstein, Simon Josefsson, Tanja Lange, Peter
Schwabe, and Bo-Yin Yang. EdDSA for more curves.
Cryptology ePrint Archive, Report 2015/677, 2015. URL
http://eprint.iacr.org/2015/677.

[8] Ianix. Things that use Ed25519, 2017. URL https://
ianix.com/pub/ed25519-deployment.html.

[9] Ilari Liusvaara and Simon Josefsson. Edwards-Curve
Digital Signature Algorithm (EdDSA). RFC 8032, Jan-
uary 2017. URL https://rfc-editor.org/rfc/
rfc8032.txt.

[10] Alessandro Barenghi and Gerardo Pelosi. A note on fault
attacks against deterministic signature schemes. In Interna-
tional Workshop on Security, pages 182–192. Springer, 2016.

[11] Benedikt Schmidt. [curves] EdDSA specification, 2016. URL
https://moderncrypto.org/mail-archive/
curves/2016/000768.html.

[12] Maarten Baert. Ed25519 leaks private key if public key
is incorrect #170, 2014. URL https://github.com/
jedisct1/libsodium/issues/170.

[13] Trevor Perrin. The XEdDSA and VXEdDSA
Signature Schemes, revision 1, 2016. URL https:
//whispersystems.org/docs/specifications/
xeddsa/.

[14] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange,
and Christiane Peters. Twisted edwards curves. Cryptology
ePrint Archive, Report 2008/013, 2008. URL http://
eprint.iacr.org/2008/013.

[15] Eloi Sanflix and Andres Moreno. RHME2 CTF challenges
and solutions. Insomni’hack, 2017.

[16] Brett Giller. Implementing practical electrical glitching at-
tacks. Black Hat Europe, 2015.

[17] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno
Robisson, and Emmanuelle Encrenaz. Electromagnetic fault
injection: towards a fault model on a 32-bit microcontroller.
In Wieland Fischer and Jorn-Marc Schmidt, editors, Fault
Diagnosis and Tolerance in Cryptography (FDTC), 2013
Workshop on, pages 77–88. IEEE Computer Society, 2013.

[18] Noemie Beringuier-Boher, Marc Lacruche, David El-Baze,
Jean-Max Dutertre, Jean-Baptiste Rigaud, and Philippe Mau-
rine. Body biasing injection attacks in practice. In Proceed-
ings of the Third Workshop on Cryptography and Security in
Computing Systems, CS2 ’16, pages 49–54, 2016.

[19] Sergei Skorobogatov and Ross Anderson. Optical Fault
Induction Attacks, pages 2–12. Springer Berlin Heidelberg,
2003.

[20] Falk Schellenberg, Markus Finkeldey, Nils Gerhardt, Martin
Hofmann, Amir Moradi, and Christof Paar. Large laser
spots and fault sensitivity analysis. In 2016 IEEE Interna-
tional Symposium on Hardware Oriented Security and Trust
(HOST), pages 203–208, 2016.

[21] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On
the importance of checking cryptographic protocols for faults.
In Walter Fumy, editor, Advances in Cryptology EURO-
CRYPT 97, volume 1233 of LNCS, pages 37–51. Springer
Berlin Heidelberg, 1997.

[22] Christian Aumüller, Peter Bier, Peter Hofreiter, Wieland
Fischer, and Jean-Pierre Seifert. Fault attacks on RSA
with CRT: Concrete Results and Practical Countermeasures.
Cryptology ePrint Archive, Report 2002/073, 2002. URL
http://eprint.iacr.org/2002/073.

[23] Mathieu Ciet and Marc Joye. Elliptic curve cryptosystems in
the presence of permanent and transient faults. Cryptology
ePrint Archive, Report 2003/028, 2003. URL http://
eprint.iacr.org/2003/028.



[24] Jörn-Marc Schmidt and Marcel Medwed. A fault attack
on ecdsa. In Proceedings of the 2009 Workshop on Fault
Diagnosis and Tolerance in Cryptography, FDTC ’09, pages
93–99. IEEE Computer Society, 2009.

[25] Hermann Seuschek, Johann Heyszl, and Fabrizio De Santis.
A Cautionary Note: Side-Channel Leakage Implications of
Deterministic Signature Schemes. In Proceedings of the
Third Workshop on Cryptography and Security in Computing
Systems, CS2 ’16, pages 7–12. ACM, 2016.

[26] Thomas Pornin. Deterministic Usage of the Digital Signa-
ture Algorithm (DSA) and Elliptic Curve Digital Signature
Algorithm (ECDSA). RFC 6979, August 2013. URL
https://rfc-editor.org/rfc/rfc6979.txt.

[27] Daniel J. Bernstein. EdDSA software, 2017. URL https:
//ed25519.cr.yp.to/python/ed25519.py.

[28] Sylvain Pelissier and Yolan Romailler. Eddsa-
glitch-attack, 2017. URL https://github.com/
kudelskisecurity/EdDSA-fault-attack.

[29] ArduinoLibs. Cryptographic library, 2016. URL
https://rweather.github.io/arduinolibs/
crypto.html.

[30] Yen Sung-Ming, Seungjoo Kim, Seongan Lim, and SangJae
Moon. RSA speedup with residue number system immune
against hardware fault cryptanalysis. In International Confer-
ence on Information Security and Cryptology, pages 397–413.
Springer, 2001.

APPENDIX

We propose here an example to test the attack and its
different phases, as well as practical values obtained when
performing the fault attack. This is also part of our python
code [28].

A. Example

We are using Ed25519. Let the key pair be:
k = 523b05d3a02887f67eef8bec3f723dc2c17

73200d779fa8d1f5f2afbd84ef529
A = 35e7d4d097deb97470d03ff2ae9b515d090

a54fc76f50e95bac0d21a86bd5d3c

We sign the message “test” with the secret key k and we
obtain thus:
M = 74657374
R = b18b67af0d1bcc4786322748d682c6eef15

90fee77e3ba1eccaf71856ce481f3
S = 95635ccb2af746eba982d8d8674d12468db

804dc8403ea5ddafe3a32dc0f6105

Now, one can verify the signature R|S against the message
”test” using pk, for | the concatenation operation and see
that it is valid.

Now, here is a faulted signature for the same message and
key pair:

M = 74657374
R’ = b18b67af0d1bcc4786322748d682c6eef15

90fee77e3ba1eccaf71856ce481f3
S’ = 2d210d14c162d508379562b745004f23b5b

16313b1bab7b5408c0d586358f200

As one can see, the R and R’ values are identical, while the
S and S’ values differ, this means there is a problem and
indeed the signature R’|S’ is not valid against the message
“test”.

We can thus compute a as shown in Section IV and we
obtain through the explained brute-force computation using
Algorithm 2 that there is effectively a single octet error,
which occurred at offset 5 of the hash H(R,A,M), which
leads us to:
a = 110ce4cd00b3bc0c677cd52ac368710a851

9e83a17dc00a0e21c6b43aee142f

Using that a we can now sign other messages of our
choice, using random r values. For example the following
would be a signature that is valid under A of the message
“anothermessage”:

M = 616e6f746865726d657373616765
R = da406c4bd799398a53aadedc1539a188e54

3822724c8b836ef6e8e14ed1a17a5
S = 580cb166d5529434bdbec155b6d59b98b1a

de1cd79d57de7c987b99e55bd770c

while the actual signature when signing using k would have
been:



R = 7636c2bcf86567843a5c4a04f896f5041da
6021aff5de1f1442c6e83bda5b93b

S = a363ef93ae1a31cd993000d180955180f81
2ea505b67f0f8b82493b296a52a09

yet both are valid for verifying the message “anothermes-
sage” using the same A as public key.

B. Practical faults on Arduino Nano

During our experiments, the public key was:
A = 9c74125c9a2bcfbc6107bcdb00b79b93811

2b3ec2fa4db67b7128f2a8cc9da43
We performed a voltage glitch during the signature of the

message ”test1” padded with zeros. Here is some example
of the fault we obtained:
M = 74657374310000000000000000000000000

00000000000000000000000000000
R = d49bd03b98b85afbcff46bfacf9af673662

a253871ec9a56d035aefad2166e54
S1 = 49f230f6967071855663997a5fe0562f73c

aec8cceaa202a8ba39c1cee807c0b
R = d49bd03b98b85afbcff46bfacf9af673662

a253871ec9a56d035aefad2166e54
S2 = b2811f21f6e1f7d92d393621bc0584ee7b2

89a357448ec54bd3d7f21d42aee0f
R = d49bd03b98b85afbcff46bfacf9af673662

a253871ec9a56d035aefad2166e54
S3 = 67a7f6fc4a0270d5b2e238777b4453cd973

3e4f4052b5b097c21fc3062b8b008
R = d49bd03b98b85afbcff46bfacf9af673662

a253871ec9a56d035aefad2166e54
S4 = 58b12c240028c2e854a1f373b874732e655

b1780fca01001fe12691b93879500
R = d49bd03b98b85afbcff46bfacf9af673662

a253871ec9a56d035aefad2166e54
S5 = 4b4934ee480c076ab4b19ed375044f4e601

ccb7a751b4b81cf8c607d9122e00b
We ran our program on this signature, and we found an

error at offset 6 for S1, 4 for S2, 2 for S3 and 1 for S4.
S5 was not corresponding to our fault model, since more
than one byte was faulted. For the first four signatures, the
program could recover the value:

a = ba1a351f0a13d9c58d23b60fa34ce0a4dd1
7ba37da6bc6a41fc6ed4541f4682


